论文标题

惠特克(Whittaker

Whittaker modules for the planar Galilean conformal algebra and its central extension

论文作者

Chen, Qiufan, Yao, Yufeng, Yang, Hengyun

论文摘要

令$ \ mathcal {g} $为平面galilean conformal代数,$ \ widetilde {\ mathcal {g}} $是其通用中心扩展。然后$ \ MATHCAL {G} $(resp。 $ \ MATHCAL {G} = \ MATHCAL {G}^{+} \ OPLUS \ MATHCAL {G}^{0} \ oplus \ Mathcal \ Mathcal {G}^{ - } $(resp。 $ \ widetilde {\ Mathcal {g}} = \ widetilde {\ Mathcal {g}}}^{+} \ oplus \ oplus \ widetilde {\ Mathcal {g}}}}^{0}^{0} \ oplus \ wideTilde在本文中,我们研究了通用和通用的Whittaker $ \ MATHCAL {G} $ - 模块(分别$ ϕ:\ MATHCAL {g}^{+} = \ widetilde {\ Mathcal {g}}}^{+} \ longrightArrow \ Mathbb {c} $是一个lie代数同源。我们对通用和通用惠特克模块的同构类别进行分类。此外,我们表明$ ϕ $的通用惠特克模块在且仅当$ ϕ $非发挥时是不可约的。对于非语言情况,我们完全确定了通用和通用惠特克模块中的惠特克载体。对于奇异案例,我们构建了一些适当的通用惠特克模块的基本模块。

Let $\mathcal{G}$ be the planar Galilean conformal algebra and $\widetilde{\mathcal{G}}$ be its universal central extension. Then $\mathcal{G}$ (resp. $\widetilde{\mathcal{G}}$) admits a triangular decomposition: $\mathcal{G}=\mathcal{G}^{+}\oplus\mathcal{G}^{0}\oplus\mathcal{G}^{-}$ (resp. $\widetilde{\mathcal{G}}=\widetilde{\mathcal{G}}^{+}\oplus\widetilde{\mathcal{G}}^{0}\oplus\widetilde{\mathcal{G}}^{-}$). In this paper, we study universal and generic Whittaker $\mathcal{G}$-modules (resp. $\widetilde{\mathcal{G}}$-modules) of type $ϕ$, where $ϕ:\mathcal{G}^{+}=\widetilde{\mathcal{G}}^{+}\longrightarrow\mathbb{C}$ is a Lie algebra homomorphism. We classify the isomorphism classes of universal and generic Whittaker modules. Moreover, we show that a generic Whittaker modules of type $ϕ$ is irreducible if and only if $ϕ$ is nonsingular. For the nonsingular case, we completely determine the Whittaker vectors in universal and generic Whittaker modules. For the singular case, we concretely construct some proper submodules of generic Whittaker modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源