论文标题

套件MOMA:移动机数据集

KIT MOMA: A Mobile Machines Dataset

论文作者

Xiang, Yusheng, Wang, Hongzhe, Su, Tianqing, Li, Ruoyu, Brach, Christine, Mao, Samuel S., Geimer, Marcus

论文摘要

移动机通常在封闭的站点上工作,具有使用自动驾驶技术的很高潜力。但是,大力蓬勃发展的发展和创新主要发生在乘用车领域。相比之下,尽管关于自动驾驶或在移动机器中工作的研究文章也有许多研究,但仍未达成有关SOTA解决方案的共识。我们认为,应解决的最紧急问题是缺乏公众和具有挑战性的视觉数据集,这使得不同研究的结果可比。为了解决该问题,我们发布了套件MOMA数据集,包括八类常用的移动机器,可以用作评估SOTA算法以检测移动施工机的基准测试。收集的图像的视图位于移动机器之外,因为我们认为,如果所有有趣的机器都在封闭的站点中工作,那么地面上的固定摄像头就更合适。 MOMA套件中的大多数图像都处于真实场景中,而某些图像来自Top Construction Machine Companies的官方网站。另外,我们已经评估了数据集上的Yolo V3的性能,表明SOTA计算机视觉算法已经显示出在特定工作网站中检测移动机的出色性能。与数据集一起,我们还上传了训练有素的权重,这可以由建筑机业工程师的工程师直接使用。数据集,训练的权重和更新可以在我们的GitHub上找到。此外,可以在我们的YouTube上找到演示。

Mobile machines typically working in a closed site, have a high potential to utilize autonomous driving technology. However, vigorously thriving development and innovation are happening mostly in the area of passenger cars. In contrast, although there are also many research pieces about autonomous driving or working in mobile machines, a consensus about the SOTA solution is still not achieved. We believe that the most urgent problem that should be solved is the absence of a public and challenging visual dataset, which makes the results from different researches comparable. To address the problem, we publish the KIT MOMA dataset, including eight classes of commonly used mobile machines, which can be used as a benchmark to evaluate the SOTA algorithms to detect mobile construction machines. The view of the gathered images is outside of the mobile machines since we believe fixed cameras on the ground are more suitable if all the interesting machines are working in a closed site. Most of the images in KIT MOMA are in a real scene, whereas some of the images are from the official website of top construction machine companies. Also, we have evaluated the performance of YOLO v3 on our dataset, indicating that the SOTA computer vision algorithms already show an excellent performance for detecting the mobile machines in a specific working site. Together with the dataset, we also upload the trained weights, which can be directly used by engineers from the construction machine industry. The dataset, trained weights, and updates can be found on our Github. Moreover, the demo can be found on our Youtube.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源