论文标题

可编程物质的生物启发的能源分配

Bio-Inspired Energy Distribution for Programmable Matter

论文作者

Daymude, Joshua J., Richa, Andréa W., Weber, Jamison W.

论文摘要

在主动可编程物质的系统中,单个模块需要持续的能源供应才能参与系统的集体行为。这些系统通常由至少一个模块访问的外部能源提供动力,并依靠模块到模块的功率传输来在整个系统中分配能量。尽管在可编程物质硬件中解决了电源管理的挑战方面,但针对可编程物质的算法理论在很大程度上忽略了能源使用和分布对算法可行性和效率的影响。在这项工作中,我们提出了一种在Amoebot模型中用于能量分布的算法,该算法受到枯草芽孢杆菌细菌生物膜的生长行为的启发。这些细菌使用化学信号传导来传达其代谢状态并调节整个生物膜的养分消耗,以确保所有细菌都接受所需的养分。我们的算法类似地使用通信来抑制饥饿的模块时抑制能量使用情况,从而使所有模块能够获得足够的能量来满足其需求。作为一个支持但独立的结果,我们扩展了Amoebot模型的跨越森林原始的跨越,以便在崩溃失败的存在下自动稳定。最后,我们通过展示如何利用这种自动化的原始化来使用现有的Amoebot模型算法来构成我们的能量分布算法,从而有效地概括了先前的工作,以考虑能量限制。

In systems of active programmable matter, individual modules require a constant supply of energy to participate in the system's collective behavior. These systems are often powered by an external energy source accessible by at least one module and rely on module-to-module power transfer to distribute energy throughout the system. While much effort has gone into addressing challenging aspects of power management in programmable matter hardware, algorithmic theory for programmable matter has largely ignored the impact of energy usage and distribution on algorithm feasibility and efficiency. In this work, we present an algorithm for energy distribution in the amoebot model that is loosely inspired by the growth behavior of Bacillus subtilis bacterial biofilms. These bacteria use chemical signaling to communicate their metabolic states and regulate nutrient consumption throughout the biofilm, ensuring that all bacteria receive the nutrients they need. Our algorithm similarly uses communication to inhibit energy usage when there are starving modules, enabling all modules to receive sufficient energy to meet their demands. As a supporting but independent result, we extend the amoebot model's well-established spanning forest primitive so that it self-stabilizes in the presence of crash failures. We conclude by showing how this self-stabilizing primitive can be leveraged to compose our energy distribution algorithm with existing amoebot model algorithms, effectively generalizing previous work to also consider energy constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源