论文标题
双尖峰Dirichlet先验用于结构化加权
Double spike Dirichlet priors for structured weighting
论文作者
论文摘要
在各种应用中,将权重分配给大量对象是一项基本任务。在本文中,我们介绍了结构化的高维概率单纯性的概念,其中大多数组件为零或接近零,其余的组件彼此接近。这种结构是由(i)在现代应用中常见的(i)高维权重的动机,以及(ii)普遍存在的例子,尽管它们很简单,但同等的权重通常会实现有利甚至最先进的预测性能。然而,这种特殊的结构提出了独特的挑战,部分原因是,与高维线性回归不同,参数空间是单纯的,并且在部分恒定和稀疏之间进行模式切换是未知的。为了应对这些挑战,我们提出了一类新的Double Spike Dirichlet先验,以将概率单纯化缩小到具有所需结构的概率。当应用于集合学习时,此类先验会导致一种用于结构化高维合奏的贝叶斯方法,该方法可用于预测组合和改善随机森林,同时实现不确定性定量。我们为实施设计有效的马尔可夫链蒙特卡洛算法。建立后收缩率以研究后验分布的大型样本行为。我们使用欧洲中央银行对专业预测者数据集的调查以及来自UC Irvine机器学习存储库(UCI)的数据集的欧洲中央银行调查,通过模拟和两个真实的数据应用程序展示了所提出方法的广泛适用性和竞争性能。
Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce the concept of structured high-dimensional probability simplexes, in which most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by (i) high-dimensional weights that are common in modern applications, and (ii) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performance. This particular structure, however, presents unique challenges partly because, unlike high-dimensional linear regression, the parameter space is a simplex and pattern switching between partial constancy and sparsity is unknown. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for implementation. Posterior contraction rates are established to study large sample behaviors of the posterior distribution. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters data set and a data set from the UC Irvine Machine Learning Repository (UCI).