论文标题

在线概率标签树

Online probabilistic label trees

论文作者

Jasinska-Kobus, Kalina, Wydmuch, Marek, Thiruvenkatachari, Devanathan, Dembczyński, Krzysztof

论文摘要

我们介绍了在线概率标签树(OPLTS),这是一种以完全在线训练标签树分类器的算法,而没有任何先前了解培训实例,其功能和标签的知识。 OPLT的特征是低时间和空间复杂性以及强大的理论保证。它们可用于在线多标签和多级分类,包括一单击学习的非常具有挑战性的方案。我们在一项广泛的实证研究中证明了OPLT在上述任务的几个实例中的吸引力。

We introduce online probabilistic label trees (OPLTs), an algorithm that trains a label tree classifier in a fully online manner without any prior knowledge about the number of training instances, their features and labels. OPLTs are characterized by low time and space complexity as well as strong theoretical guarantees. They can be used for online multi-label and multi-class classification, including the very challenging scenarios of one- or few-shot learning. We demonstrate the attractiveness of OPLTs in a wide empirical study on several instances of the tasks mentioned above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源