论文标题
通过点项目对球的表征
Characterizations of the sphere by means of point-projections
论文作者
论文摘要
在这项工作中,我们证明了以下内容:让$ k $成为欧几里得空间中的凸体$ \ mathbb {s}^{n-1} $,$ k $看起来为中心对称,$ p $出现为中心,然后$ k $是一个球。
In this work we prove the following: let $K$ be a convex body in the Euclidean space $\mathbb{R}^n$, $n\geq 3$, contained in the interior of the unit ball of $\mathbb{R}^n$, and let $p\in \mathbb{R}^n$ be a point such that, from each point of $\mathbb{S}^{n-1}$, $K$ looks centrally symmetric and $p$ appears as the center, then $K$ is a ball.