论文标题

迈向开放世界建议:一种基于归纳模型的协作过滤方法

Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach

论文作者

Wu, Qitian, Zhang, Hengrui, Gao, Xiaofeng, Yan, Junchi, Zha, Hongyuan

论文摘要

建议模型可以有效地估计用户兴趣的潜在兴趣,并通过将观察到的用户项目评级矩阵分配到两组潜在因素的产品中,以预测其未来行为。但是,只能以转导的方式学习特定于用户的嵌入因素,这使得很难在直觉上处理新用户。在本文中,我们提出了一个归纳性协作过滤框架,其中包含两个表示模型。第一个模型遵循传统的矩阵分解,该矩阵分解将一组密钥用户的评级矩阵分配以获取元潜伏期。第二个模型诉诸于基于注意力的结构学习,该学习估计了从查询到关键用户的隐藏关系,并学会利用元潜伏期通过神经消息传递来归纳为查询用户计算嵌入。我们的模型可以为用户提供归纳表示学习,同时保证等效表示能力作为矩阵分解。实验表明,我们的模型可以在训练等级有限的少数射击用户和新的未见用户中获得有希望的结果,这些用户通常在开放世界推荐系统中遇到。

Recommendation models can effectively estimate underlying user interests and predict one's future behaviors by factorizing an observed user-item rating matrix into products of two sets of latent factors. However, the user-specific embedding factors can only be learned in a transductive way, making it difficult to handle new users on-the-fly. In this paper, we propose an inductive collaborative filtering framework that contains two representation models. The first model follows conventional matrix factorization which factorizes a group of key users' rating matrix to obtain meta latents. The second model resorts to attention-based structure learning that estimates hidden relations from query to key users and learns to leverage meta latents to inductively compute embeddings for query users via neural message passing. Our model enables inductive representation learning for users and meanwhile guarantees equivalent representation capacity as matrix factorization. Experiments demonstrate that our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users which are commonly encountered in open-world recommender systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源