论文标题
AI辅助服装设计
AI Assisted Apparel Design
论文作者
论文摘要
时尚是一个快速变化的行业,每个季节都会大规模刷新设计。此外,它面临着未售出的库存的巨大挑战,因为并非所有设计都吸引了客户。这使设计人员承受着巨大的压力。首先,他们需要创建无数的新鲜设计。其次,他们需要创建吸引客户的设计。尽管我们看到了帮助设计师分析消费者的方法的进步,但这种见解通常太多了。通过这些见解创建所有可能的设计是耗时的。在本文中,我们提出了一个AI助手系统,该系统可以协助设计师的设计旅程。拟议的系统协助设计人员分析服装的不同销售/趋势属性。我们提出了两名设计助手,分别是服装风格的融合和服装风格的转移。服装风格的混合物通过结合服装的高级组件来生成新的设计,而服装式转移转移通过应用不同的样式,颜色和图案来生成服装的多次定制。我们创建了一个新的数据集,名为DeepAttributestyle,并在不同的服装组件(例如颈部,袖子等)的地标进行了细粒度注释。在由具有和没有设计背景的人组成的人组成的用户组上,评估了拟议的系统。我们的评估结果表明,我们的方法生成了可以轻松用于制造的高质量设计。此外,建议的设计有助于设计师的创造力。
Fashion is a fast-changing industry where designs are refreshed at large scale every season. Moreover, it faces huge challenge of unsold inventory as not all designs appeal to customers. This puts designers under significant pressure. Firstly, they need to create innumerous fresh designs. Secondly, they need to create designs that appeal to customers. Although we see advancements in approaches to help designers analyzing consumers, often such insights are too many. Creating all possible designs with those insights is time consuming. In this paper, we propose a system of AI assistants that assists designers in their design journey. The proposed system assists designers in analyzing different selling/trending attributes of apparels. We propose two design generation assistants namely Apparel-Style-Merge and Apparel-Style-Transfer. Apparel-Style-Merge generates new designs by combining high level components of apparels whereas Apparel-Style-Transfer generates multiple customization of apparels by applying different styles, colors and patterns. We compose a new dataset, named DeepAttributeStyle, with fine-grained annotation of landmarks of different apparel components such as neck, sleeve etc. The proposed system is evaluated on a user group consisting of people with and without design background. Our evaluation result demonstrates that our approach generates high quality designs that can be easily used in fabrication. Moreover, the suggested designs aid to the designers creativity.