论文标题
广告和边界RG流中的CFT
CFT in AdS and boundary RG flows
论文作者
论文摘要
利用具有边界的平坦空间通过向反DE保姆(ADS)空间进行的平坦空间与边界共形场理论(BCFT)中的可观察物相关,通过将CFT放置在ADS中。除了本地运算符的相关函数外,一定数量的兴趣是用双曲球度量计算在广告空间上的CFT的自由能,即具有球形边界。很自然地期望广告自由能可用于定义在边界重新归一化组(RG)流下减少的数量。我们通过详细讨论一般尺寸$ d $中的大$ n $关键$ o(n)$模型以及其在Epsilon-Expansion中的扰动描述来测试这个想法。使用ADS方法,我们恢复了模型的各种已知边界关键行为,并计算每个边界固定点的自由能,找到与在连续尺寸范围内的$ f $ theorem一致的结果。最后,我们还使用广告设置来计算相关函数并提取一些BCFT数据。特别是,我们表明,使用大量运动方程,并结合交叉对称性,提供了一种有效的方法来限制大量的两点函数并提取边界运算符的异常维度。
Using the fact that flat space with a boundary is related by a Weyl transformation to anti-de Sitter (AdS) space, one may study observables in boundary conformal field theory (BCFT) by placing a CFT in AdS. In addition to correlation functions of local operators, a quantity of interest is the free energy of the CFT computed on the AdS space with hyperbolic ball metric, i.e. with a spherical boundary. It is natural to expect that the AdS free energy can be used to define a quantity that decreases under boundary renormalization group (RG) flows. We test this idea by discussing in detail the case of the large $N$ critical $O(N)$ model in general dimension $d$, as well as its perturbative descriptions in the epsilon-expansion. Using the AdS approach, we recover the various known boundary critical behaviors of the model, and we compute the free energy for each boundary fixed point, finding results which are consistent with the conjectured $F$-theorem in a continuous range of dimensions. Finally, we also use the AdS setup to compute correlation functions and extract some of the BCFT data. In particular, we show that using the bulk equations of motion, in conjunction with crossing symmetry, gives an efficient way to constrain bulk two-point functions and extract anomalous dimensions of boundary operators.