论文标题
列举具有明确坐标的有限字段上的交替矩阵空间
Enumerating alternating matrix spaces over finite fields with explicit coordinates
论文作者
论文摘要
我们启动了具有显式坐标的有限磁场上交替矩阵的列举线性子空间的研究。我们假设这项研究可以看作是列举标记图的经典主题的线性代数类似物。为了支持这个观点,我们介绍了吉尔伯特公式的Q-Analogues,用于列举连接的图形(Can。J.Math。,1956),以及用于列举C色图的Read公式(Can。J.Math。,1960)。我们还开发了Riddell公式的类似物,该公式将图的指数生成函数与连接图的指数生成函数(Riddell's Phd论文,1951年)建立在srinivasan开发的Eulerian生成函数(Invete Math。,2006年)上。
We initiate the study of enumerating linear subspaces of alternating matrices over finite fields with explicit coordinates. We postulate that this study can be viewed as a linear algebraic analogue of the classical topic of enumerating labelled graphs. To support this viewpoint, we present q-analogues of Gilbert's formula for enumerating connected graphs (Can. J. Math., 1956), and Read's formula for enumerating c-colored graphs (Can. J. Math., 1960). We also develop an analogue of Riddell's formula relating the exponential generating function of graphs with that of connected graphs (Riddell's PhD thesis, 1951), building on Eulerian generating functions developed by Srinivasan (Discrete Math., 2006).