论文标题
使用信息理论隐私隐藏敏感基因型的机制
Mechanisms for Hiding Sensitive Genotypes with Information-Theoretic Privacy
论文作者
论文摘要
由于个人基因组学服务的可用性日益增长,我们研究了共享基因组数据时出现的信息理论隐私问题:用户希望共享他或她的基因组序列,同时将基因型隐藏在某些位置上,否则可以揭示与健康相关的重要信息。擦除(掩盖)所选基因型的直接解决方案不能确保隐私,因为附近位置之间的相关性会泄漏掩盖的基因型。我们引入了具有完美信息理论隐私的基于擦除的隐私机制,从而在统计上独立于敏感的基因型。我们的机制可以解释为用于给定序列位置的给定处理顺序的本地贪婪算法,在该序列位置的处理顺序中,实用程序是通过无需擦除的位置的数量来衡量的。我们表明,找到最佳顺序通常是NP-HARD,并在最佳实用程序上提供了上限。对于隐藏的马尔可夫模型的序列,遗传学中的标准建模方法,我们提出了具有复杂性多项式长度多项式的机制的有效算法实现。此外,我们通过限制了错误的先前分布中的隐私泄漏来说明机制的鲁棒性。我们的工作是迈向更严格控制基因组数据共享隐私的一步。
Motivated by the growing availability of personal genomics services, we study an information-theoretic privacy problem that arises when sharing genomic data: a user wants to share his or her genome sequence while keeping the genotypes at certain positions hidden, which could otherwise reveal critical health-related information. A straightforward solution of erasing (masking) the chosen genotypes does not ensure privacy, because the correlation between nearby positions can leak the masked genotypes. We introduce an erasure-based privacy mechanism with perfect information-theoretic privacy, whereby the released sequence is statistically independent of the sensitive genotypes. Our mechanism can be interpreted as a locally-optimal greedy algorithm for a given processing order of sequence positions, where utility is measured by the number of positions released without erasure. We show that finding an optimal order is NP-hard in general and provide an upper bound on the optimal utility. For sequences from hidden Markov models, a standard modeling approach in genetics, we propose an efficient algorithmic implementation of our mechanism with complexity polynomial in sequence length. Moreover, we illustrate the robustness of the mechanism by bounding the privacy leakage from erroneous prior distributions. Our work is a step towards more rigorous control of privacy in genomic data sharing.