论文标题

在Illustristng中对Galaxy簇的普查的深入学习观点

A deep learning view of the census of galaxy clusters in IllustrisTNG

论文作者

Su, Y., Zhang, Y., Liang, G., ZuHone, J. A., Barnes, D. J., Jacobs, N. B., Ntampaka, M., Forman, W. R., Nulsen, P. E. J., Kraft, R. P., Jones, C.

论文摘要

星系簇种群多样化的起源仍然是大规模结构形成和簇进化的一个无法解释的方面。我们提出了一种使用X射线图像来识别凉爽核心(CC),弱酷芯(WCC)和非冷核(NCC)星系簇的新方法,这些方法是由其中央冷却时间定义的。我们采用卷积神经网络RESNET-18(通常用于图像分析)来对簇进行分类。我们为从Illustristng模拟中绘制的318个大量群集样品产生模拟的Chandra X射线观测值。该网络通过低分辨率模拟Chandra图像进行了训练和测试,该图像涵盖了样本中的簇中央1 MPC正方形。没有任何光谱信息,深度学习算法能够识别CC,WCC和NCC群集,分别达到平衡精度(BACC)为92%,81%和83%。通过使用中央气体密度的常规方法,该性能优于分类,平均BACC = 81%,或表面亮度浓度,BACC = 73%。我们使用类激活映射来本地化歧视区域进行分类决策。从该分析中,我们观察到该网络已从群集中心到r〜300 kpc和r〜500 kpc的区域分别识别CC和NCC簇。它可能已经在群内介质中识别出与AGN反馈和破坏性的主要合并相关的特征。

The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non cool core (NCC) clusters of galaxies, that are defined by their central cooling times. We employ a convolutional neural network, ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low resolution mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92%, 81%, and 83%, respectively. The performance is superior to classification by conventional methods using central gas densities, with an average BAcc = 81%, or surface brightness concentrations, giving BAcc = 73%. We use Class Activation Mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the network has utilized regions from cluster centers out to r~300 kpc and r~500 kpc to identify CC and NCC clusters, respectively. It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源