论文标题

使用有效的数据增强技术,使用深度学习对脑MRI的局部运动伪影减少

Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques

论文作者

Zhao, Yijun, Ossowski, Jacek, Wang, Xuming, Li, Shangjin, Devinsky, Orrin, Martin, Samantha P., Pardoe, Heath R.

论文摘要

扫描仪运动降低了磁共振成像(MRI)的质量,从而降低了其在检测临床相关异常的检测方面的效用。我们引入了基于深度学习的MRI伪像还原模型(DMAR),以在脑MRI扫描中定位和纠正头部运动伪像。我们的方法整合了计算机视觉中对象检测和降噪方面的最新进展。具体而言,DMAR采用了两阶段的方法:在第一个降解区域中,使用单枪Multibox检测器(SSD)检测到降级区域,在第二个shots Multibox检测器(SSD)中,使用卷积自动码编码器(CAE)减少了发现区域内的伪像。我们进一步介绍了一组新型的数据增强技术,以解决MRI图像的高维度和可用数据的稀缺性。结果,我们的模型在大型合成数据集上进行了培训,该数据集由375个全脑T1加权MRI扫描产生的225,000张图像。 DMAR明显地从多中心自闭症脑成像数据交换(ABIDE)研究中从18个受试者(ABIDE)研究中应用于合成测试图像和55个现实运动影响的切片时,可明显降低图像伪像。定量地,根据降解水平,我们的模型在5000个样本的合成图像集上,RMSE的RMSE降低了27.8%-48.1%,PSNR的2.88--5.79 dB增益。对于依然伪像的人伪影扫描,我们的模型降低了受伪影影响的大脑区域内图像族的强度的方差(p = 0.014)。

In-scanner motion degrades the quality of magnetic resonance imaging (MRI) thereby reducing its utility in the detection of clinically relevant abnormalities. We introduce a deep learning-based MRI artifact reduction model (DMAR) to localize and correct head motion artifacts in brain MRI scans. Our approach integrates the latest advances in object detection and noise reduction in Computer Vision. Specifically, DMAR employs a two-stage approach: in the first, degraded regions are detected using the Single Shot Multibox Detector (SSD), and in the second, the artifacts within the found regions are reduced using a convolutional autoencoder (CAE). We further introduce a set of novel data augmentation techniques to address the high dimensionality of MRI images and the scarcity of available data. As a result, our model was trained on a large synthetic dataset of 225,000 images generated from 375 whole brain T1-weighted MRI scans. DMAR visibly reduces image artifacts when applied to both synthetic test images and 55 real-world motion-affected slices from 18 subjects from the multi-center Autism Brain Imaging Data Exchange (ABIDE) study. Quantitatively, depending on the level of degradation, our model achieves a 27.8%-48.1% reduction in RMSE and a 2.88--5.79 dB gain in PSNR on a 5000-sample set of synthetic images. For real-world artifact-affected scans from ABIDE, our model reduced the variance of image voxel intensity within artifact-affected brain regions (p = 0.014).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源