论文标题

对于经典和量子系统的数值时间演变的四阶Leapfrog算法

Fourth-order leapfrog algorithms for numerical time evolution of classical and quantum systems

论文作者

Hue, Jun Hao, Eren, Ege, Chiew, Shao Hen, Lau, Jonathan Wei Zhong, Chang, Leo, Chau, Thanh Tri, Trappe, Martin-Isbjörn, Englert, Berthold-Georg

论文摘要

Chau等。 [New J. Phys。 20,073003(2018)]提出了一个新的,直截了当的派生,该近似值是时间进化运算符的四阶“ $ u_7 $”,并暗示其作为符号集成符的潜在价值。 $ U_7 $基于Suzuki-Trotter Split-Operator方法,并导致用于数值时间传播的算法,该算法优于已建立的方法。我们基于$ u_7 $和其他算法的性能,包括runge-kutta方法和另一个最近开发的基于铃木 - 漫游器的方案,这些方案在Evolution参数中与各种经典和量子系统相比,它们在Evolution参数中的精确性最高。我们发现$ u_7 $在此处测试的所有系统和算法中,以最低的计算成本提供了任何给定的目标准确性。这项研究伴随着开源数值软件,我们希望在课堂上证明有价值。

Chau et al. [New J. Phys. 20, 073003 (2018)] presented a new and straight-forward derivation of a fourth-order approximation '$U_7$' of the time-evolution operator and hinted at its potential value as a symplectic integrator. $U_7$ is based on the Suzuki-Trotter split-operator method and leads to an algorithm for numerical time propagation that is superior to established methods. We benchmark the performance of $U_7$ and other algorithms, including a Runge-Kutta method and another recently developed Suzuki-Trotter-based scheme, that are exact up to fourth order in the evolution parameter, against various classical and quantum systems. We find $U_7$ to deliver any given target accuracy with the lowest computational cost, across all systems and algorithms tested here. This study is accompanied by open-source numerical software that we hope will prove valuable in the classroom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源