论文标题
TFD熵操作员的纠缠熵
Entanglement Entropy from TFD Entropy Operator
论文作者
论文摘要
在这项工作中,提出了一种计算纠缠熵的规范方法。我们表明,对于在圆环中定义的二维形式理论,模量空间的选择允许TFD的典型熵操作员提供段中定义的自由度及其补体的纠缠熵。在此过程中,不必从rényi熵进行分析延续,而von Neumann纠缠熵直接根据纠缠熵操作员的期望值进行计算。我们还提出了一个模型,用于纠缠熵的演变,并表明它随时间线性生长。
In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a segment and their complement. In this procedure, it is not necessary to make an analytic continuation from the Rényi entropy and the von Neumann entanglement entropy is calculated directly from the expected value of an entanglement entropy operator. We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time.