论文标题
目标函数对数据驱动的贪婪稀疏传感器优化的影响
Effect of Objective Function on Data-Driven Greedy Sparse Sensor Optimization
论文作者
论文摘要
考虑了估计高维数据快照的最佳传感器集的选择问题。基于最佳设计标准的目标函数采用了贪婪方法:D-最佳性,A-OXTIMETIOL和E-OXTIMITAL,它最大化了决定因素,最大程度地减少了倒数的痕迹,并最大程度地提高了Fisher Information Matrix的最小特征性。首先,根据潜在状态变量和传感器的数量,得出了Fisher信息矩阵。然后,引入并证明是基于A型临时性的目标函数的统一公式,该公式是suspodular的,这为贪婪方法的性能提供了下限。接下来,将基于D-,A-和E-Oximality的贪婪方法应用于随机生成的系统和实用的全球气候数据集。关于D-偏见目标函数选择的传感器比通过A和E-Oxtimality在决定性,反向和重建误差方面的传感器更好,而A-ofimality的传感器对最小特征值的效果最好。另一方面,对于所有索引和重建误差,由电子极端目标函数选择的传感器的性能更糟。这可能是由于论文所证明的缺乏突出性。结果表明,基于D-急诊室的贪婪方法最适合于高准确的重建,计算成本较低。
The selection problem of an optimal set of sensors estimating the snapshot of high-dimensional data is considered. The objective functions based on various criteria of optimal design are adopted to the greedy method: D-optimality, A-optimality, and E-optimality, which maximizes the determinant, minimize the trace of inverse, and maximize the minimum eigenvalue of the Fisher information matrix, respectively. First, the Fisher information matrix is derived depending on the numbers of latent state variables and sensors. Then, the unified formulation of the objective function based on A-optimality is introduced and proved to be submodular, which provides the lower bound on the performance of the greedy method. Next, the greedy methods based on D-, A-, and E-optimality are applied to randomly generated systems and a practical data set of global climates. The sensors selected by the D-optimality objective function works better than those by A- and E-optimality with regard to the determinant, trace of the inverse, and reconstruction error, while those by A-optimality works the best with regard to the minimum eigenvalue. On the other hand, the performance of sensors selected by the E-optimality objective function is worse for all indices and reconstruction error. This might be because of the lack of submodularity as proved in the paper. The results indicate that the greedy method based on D-optimality is the most suitable for high accurate reconstruction with low computational cost.