论文标题
上下文感知的改进网络,结合了大脑中线描述的结构连接性
Context-Aware Refinement Network Incorporating Structural Connectivity Prior for Brain Midline Delineation
论文作者
论文摘要
大脑中线描述可以促进大脑中线转移的临床评估,这在各种脑病理学的诊断和预后中起着重要作用。然而,大脑中线描述仍然存在巨大的挑战,例如由于质量效应引起的很大变化的中线以及可能预测的中线不是连接的曲线的形态学故障。为了应对这些挑战,我们提出了一个上下文感知的改进网络(CAR-NET),以完善和整合UNET生成的特征金字塔表示。因此,拟议的汽车网探索了更具歧视性的上下文特征和更大的接受场,这对于预测很大变化的中线非常重要。为了保持大脑中线的结构连接性,我们引入了一种新颖的连通性损失(CRL),以惩罚相邻坐标之间的断开性。此外,我们解决了先前基于回归的方法的忽略先决条件,即大脑CT图像必须在标准姿势中。提出了一个简单的姿势整流网络,以使源输入图像与标准姿势图像对齐。 CQ数据集和一个INHOUSE数据集的广泛实验结果表明,根据四个评估指标,所提出的方法需要更少的参数,并且胜过三种最新方法。代码可在https://github.com/shawnbit/brain-midline-detection上找到。
Brain midline delineation can facilitate the clinical evaluation of brain midline shift, which plays an important role in the diagnosis and prognosis of various brain pathology. Nevertheless, there are still great challenges with brain midline delineation, such as the largely deformed midline caused by the mass effect and the possible morphological failure that the predicted midline is not a connected curve. To address these challenges, we propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet. Consequently, the proposed CAR-Net explores more discriminative contextual features and a larger receptive field, which is of great importance to predict largely deformed midline. For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss (CRL) to punish the disconnectivity between adjacent coordinates. Moreover, we address the ignored prerequisite of previous regression-based methods that the brain CT image must be in the standard pose. A simple pose rectification network is presented to align the source input image to the standard pose image. Extensive experimental results on the CQ dataset and one inhouse dataset show that the proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics. Code is available at https://github.com/ShawnBIT/Brain-Midline-Detection.