论文标题

对于第一个卷曲特征值的轴对称最佳结构域的不存在

Non-existence of axisymmetric optimal domains with smooth boundary for the first curl eigenvalue

论文作者

Enciso, Alberto, Peralta-Salas, Daniel

论文摘要

我们说,如果$μ_1(ω)\ leqμ_1(ω')$对于任何域$ω'$,则有限的域$ω$对于第一个正卷曲特征值$μ_1(ω)$是最佳的。尽管$μ_1(ω)$在体积方面是统一的下限,但在本文中,我们证明没有$ c^{2,α} $边界的轴对称最佳(甚至本地最小化)域,可以满足一个温和的技术假设。作为一种特殊情况,这种情况排除了$ c^{2,α} $带有凸面部分的最佳轴对称域的存在。在第一个负卷曲特征值的情况下,类似结果。

We say that a bounded domain $Ω$ is optimal for the first positive curl eigenvalue $μ_1(Ω)$ if $μ_1(Ω)\leq μ_1(Ω')$ for any domain $Ω'$ with the same volume. In spite of the fact that $μ_1(Ω)$ is uniformly lower bounded in terms of the volume, in this paper we prove that there are no axisymmetric optimal (and even locally minimizing) domains with $C^{2,α}$ boundary that satisfies a mild technical assumption. As a particular case, this rules out the existence of $C^{2,α}$ optimal axisymmetric domains with a convex section. An analogous result holds in the case of the first negative curl eigenvalue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源