论文标题

基于伪造:伪预测的延伸属性和独特性

Aperiodicity: the almost extension property and uniqueness of pseudo-expectations

论文作者

Kwaśniewski, Bartosz Kosma, Meyer, Ralf

论文摘要

我们证明了标题中的条件之间的意义,即在a c*-Algebra b中包含c*-Algebra a,并且我们还将其与其他几个属性联系起来,如果B是B群的交叉产品,用于群体,逆向半群或A。我们在A上的flose c*-Infienclusion a persection c*-crifusion aperiodic c*-Inclusion apection-excpect a strement pssepction-exccect。如果此外,如果独特的伪预测是忠实的,那么A在Cuntz预订的意义上支持B。几乎延伸的属性意味着临时性,如果b可分离,则匡威保持。当且仅当动作的双重类固定在拓扑上时,交叉产物的包含具有几乎扩展特性。拓扑上的无动作始终是至高无上的。如果A是可分离的或I型的,则拓扑结尾,多个和具有唯一的伪期望等效等效于A在所有中间C*-Algebras中检测理想的条件。另外,如果b是可分离的,那么所有这些条件都等同于几乎延伸属性。

We prove implications among the conditions in the title for an inclusion of a C*-algebra A in a C*-algebra B, and we also relate this to several other properties in case B is a crossed product for an action of a group, inverse semigroup or an étale groupoid on A. We show that an aperiodic C*-inclusion has a unique pseudo-expectation. If, in addition, the unique pseudo-expectation is faithful, then A supports B in the sense of the Cuntz preorder. The almost extension property implies aperiodicity, and the converse holds if B is separable. A crossed product inclusion has the almost extension property if and only if the dual groupoid of the action is topologically principal. Topologically free actions are always aperiodic. If A is separable or of Type I, then topological freeness, aperiodicity and having a unique pseudo-expectation are equivalent to the condition that A detects ideals in all intermediate C*-algebras. If, in addition, B is separable, then all these conditions are equivalent to the almost extension property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源