论文标题
Simba:骨骼年龄评估的特定身份标记
SIMBA: Specific Identity Markers for Bone Age Assessment
论文作者
论文摘要
骨骼年龄评估(BAA)是放射科医生执行的一项任务,以诊断儿童异常生长。在手动方法中,放射科医生在计算骨骼年龄时(即年代年龄和性别)时考虑了不同的身份标记。但是,当前的自动骨龄年龄评估方法并不能完全利用患者元数据中存在的信息。由于缺乏可用的方法作为动机,我们提出了Simba:骨骼年龄评估的特定身份标记。 Simba是基于身份标记的使用,是BAA任务的一种新颖方法。为此,我们建立在最先进的模型的基础上,将身份标记中存在的信息与原始手动X光片创建的视觉特征融合在一起。然后,我们使用这种强大的表示来估计患者的相对骨骼年龄:年代年龄和骨骼年龄之间的差异。我们在放射手姿势估计数据集上验证SIMBA,发现它的表现优于先前的最新方法。 Simba设定了一种新的计算机辅助诊断方法的趋势,该方法结合了有关患者的所有数据。为了促进该领域的进一步研究并确保可重复性我们将提供源代码以及Simba的预培训模型。
Bone Age Assessment (BAA) is a task performed by radiologists to diagnose abnormal growth in a child. In manual approaches, radiologists take into account different identity markers when calculating bone age, i.e., chronological age and gender. However, the current automated Bone Age Assessment methods do not completely exploit the information present in the patient's metadata. With this lack of available methods as motivation, we present SIMBA: Specific Identity Markers for Bone Age Assessment. SIMBA is a novel approach for the task of BAA based on the use of identity markers. For this purpose, we build upon the state-of-the-art model, fusing the information present in the identity markers with the visual features created from the original hand radiograph. We then use this robust representation to estimate the patient's relative bone age: the difference between chronological age and bone age. We validate SIMBA on the Radiological Hand Pose Estimation dataset and find that it outperforms previous state-of-the-art methods. SIMBA sets a trend of a new wave of Computer-aided Diagnosis methods that incorporate all of the data that is available regarding a patient. To promote further research in this area and ensure reproducibility we will provide the source code as well as the pre-trained models of SIMBA.