论文标题
不变的阿伯利亚品种的Brauer Group
Invariant Brauer group of an abelian variety
论文作者
论文摘要
我们研究一个可以附加到阿贝尔(Abelian)品种或复杂的圆环的新物体:不变的brauer群,如Yang Cao最近定义。在复数的字段上,这是一个基本的Abelian 2组,在等级上具有显式上限。我们展示了许多情况,其中不变的brauer群为零,并且在每个维度上构建复杂的Abelian品种,从2个,无论是简单而非简单的,都具有不变的brauer brauer of order 2。我们还解决了有限特征和非关闭领域的情况。
We study a new object that can be attached to an abelian variety or a complex torus: the invariant Brauer group, as recently defined by Yang Cao. Over the field of complex numbers this is an elementary abelian 2-group with an explicit upper bound on the rank. We exhibit many cases in which the invariant Brauer group is zero, and construct complex abelian varieties in every dimension starting with 2, both simple and non-simple, with invariant Brauer group of order 2. We also address the situation in finite characteristic and over non-closed fields.