论文标题

使用随机神经网络学习局部复杂特征进行纹理分析

Learning Local Complex Features using Randomized Neural Networks for Texture Analysis

论文作者

Ribas, Lucas C., Scabini, Leonardo F. S., Junior, Jarbas Joaci de Mesquita Sá, Bruno, Odemir M.

论文摘要

纹理是在许多图像分析问题中主要使用的视觉属性。当前,已经提出了许多使用学习技术的方法来进行纹理歧视,从而比以前的手工制作方法提高了性能。在本文中,我们提出了一种结合学习技术和复杂网络(CN)理论进行纹理分析的新方法。该方法利用CN的表示能力将纹理图像建模为有向网络,并使用顶点的拓扑信息来训练随机神经网络。该神经网络具有一个隐藏的层,并使用快速学习算法,该算法能够学习局部CN模式以进行纹理表征。因此,我们使用训练有素的神经网络的称重来组成特征向量。这些特征向量在四个广泛使用的图像数据库中的分类实验中进行了评估。实验结果表明,与其他方法相比,该方法的分类性能很高,这表明我们的方法可以在许多图像分析问题中使用。

Texture is a visual attribute largely used in many problems of image analysis. Currently, many methods that use learning techniques have been proposed for texture discrimination, achieving improved performance over previous handcrafted methods. In this paper, we present a new approach that combines a learning technique and the Complex Network (CN) theory for texture analysis. This method takes advantage of the representation capacity of CN to model a texture image as a directed network and uses the topological information of vertices to train a randomized neural network. This neural network has a single hidden layer and uses a fast learning algorithm, which is able to learn local CN patterns for texture characterization. Thus, we use the weighs of the trained neural network to compose a feature vector. These feature vectors are evaluated in a classification experiment in four widely used image databases. Experimental results show a high classification performance of the proposed method when compared to other methods, indicating that our approach can be used in many image analysis problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源