论文标题
在具有回报不确定性的多代理游戏中找到均衡
Finding Equilibrium in Multi-Agent Games with Payoff Uncertainty
论文作者
论文摘要
我们研究了在具有不完整的回报信息的多代理游戏中找到均衡策略的问题,在这种情况下,只有球员才知道收益矩阵,直到一些有限的不确定性集。在这样的游戏中,事前平衡表征了对回报不确定性的强大均衡策略。当游戏是一击时,我们表明在零和polymatrix游戏中,可以使用线性编程有效地计算出前的平衡。我们进一步扩展了前柱均衡的概念到随机游戏,在那里,游戏以一系列阶段反复进行,并且过渡动态受马尔可夫决策过程(MDP)的控制。我们为存在前柱马尔可夫完美平衡(MPE)提供了足够的条件。我们表明,在有限的收益不确定性下,可以使用动态编程计算任何两人零和随机游戏的值。
We study the problem of finding equilibrium strategies in multi-agent games with incomplete payoff information, where the payoff matrices are only known to the players up to some bounded uncertainty sets. In such games, an ex-post equilibrium characterizes equilibrium strategies that are robust to the payoff uncertainty. When the game is one-shot, we show that in zero-sum polymatrix games, an ex-post equilibrium can be computed efficiently using linear programming. We further extend the notion of ex-post equilibrium to stochastic games, where the game is played repeatedly in a sequence of stages and the transition dynamics are governed by an Markov decision process (MDP). We provide sufficient condition for the existence of an ex-post Markov perfect equilibrium (MPE). We show that under bounded payoff uncertainty, the value of any two-player zero-sum stochastic game can be computed up to a tight value interval using dynamic programming.