论文标题

图形神经网络用于大规模MIMO检测

Graph Neural Networks for Massive MIMO Detection

论文作者

Scotti, Andrea, Moghadam, Nima N., Liu, Dong, Gafvert, Karl, Huang, Jinliang

论文摘要

在本文中,我们创新使用图形神经网络(GNN)来学习一个消息解决方案,以用于在无线通信中大量多重多输入多输出(MIMO)检测的推理任务。我们采用基于马尔可夫随机场(MRF)的图形模型,当信仰传播(BP)在传输符号上假定均匀的先验时,它会产生较差的结果。数值模拟表明,在统一的先验假设下,我们的基于GNN的MIMO检测解决方案优于BP相比,我们的最小均值误差(MMSE)基线检测器优于均值误差(MMSE)基线检测器。此外,实验表明,算法的性能通过将MMSE信息纳入先验而略有改进。

In this paper, we innovately use graph neural networks (GNNs) to learn a message-passing solution for the inference task of massive multiple multiple-input multiple-output (MIMO) detection in wireless communication. We adopt a graphical model based on the Markov random field (MRF) where belief propagation (BP) yields poor results when it assumes a uniform prior over the transmitted symbols. Numerical simulations show that, under the uniform prior assumption, our GNN-based MIMO detection solution outperforms the minimum mean-squared error (MMSE) baseline detector, in contrast to BP. Furthermore, experiments demonstrate that the performance of the algorithm slightly improves by incorporating MMSE information into the prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源