论文标题

Lorentz和颗粒的置换不变II

Lorentz and permutation invariants of particles II

论文作者

Gripaios, Ben, Haddadin, Ward, Lester, C. G.

论文摘要

Weyl的两个定理告诉我们,Lorentz-(和平等)的代数不变多项式在$ n $粒子的矩中是由点产品产生的,并且当$ n $超过spacetime d $ d $的冗余是由$(d+1)$ n $ n $ n $ matr的$ d $生成的。在这里,我们使用不变代数的Cohen-Macaulay结构来提供更直接的表征,以Hironaka分解。这种方法的好处之一是,它可以直接将置换组作用于颗粒上的情况(例如某些颗粒相同的情况下)进行直接推广。在第一个非平凡的情况下,$ n = D+1 $,我们给出了一个均匀的参数系统,该系统对于任意置换对称性的作用有效,并猜想了整个Hironaka分解的情况,而无需置换对称性。附录为相关希尔伯特系列的计算提供了公式,以$ d \ leq 4 $。

Two theorems of Weyl tell us that the algebra of Lorentz- (and parity-) invariant polynomials in the momenta of $n$ particles are generated by the dot products and that the redundancies which arise when $n$ exceeds the spacetime dimension $d$ are generated by the $(d+1)$-minors of the $n \times n$ matrix of dot products. Here, we use the Cohen-Macaulay structure of the invariant algebra to provide a more direct characterisation in terms of a Hironaka decomposition. Among the benefits of this approach is that it can be generalized straightforwardly to cases where a permutation group acts on the particles, such as when some of the particles are identical. In the first non-trivial case, $n=d+1$, we give a homogeneous system of parameters that is valid for the action of an arbitrary permutation symmetry and make a conjecture for the full Hironaka decomposition in the case without permutation symmetry. An appendix gives formulæ for the computation of the relevant Hilbert series for $d \leq 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源