论文标题
在双分裂布朗尼运动的规律性上
On the Besov regularity of the bifractional Brownian motion
论文作者
论文摘要
我们在本文中的目的是改善双星布朗运动(BBM)$(b^{α,β}(t))_ {t \ in [0,1]} $,并使用$ 0 <α<1 <1 $和$ 0 <β\ leq 1 $。我们证明,BBM的几乎所有路径属于besov space $ \ mathbf {bes}(αβ,p)$(resp。$ \ mathbf {bes}(bes bes}(αβ,p)$),用于任何$ \ frac {1}}} {αβ} {αβ} <p <p <p <p <p < $ \ mathbf {bes}(αβ,p)$的可分离子空间。我们还以$αβ> \ frac {1} {2} $在HölderSpaces $ \ Mathcal {C}^γ$中显示了BBM的ITô-Nisio定理,带有$γ<αβ$。
Our aim in this paper is to improve Hölder continuity results for the bifractional Brownian motion (bBm) $(B^{α,β}(t))_{t\in[0,1] }$ with $0<α<1$ and $0<β\leq 1$. We prove that almost all paths of the bBm belong (resp. do not belong) to the Besov spaces $\mathbf{Bes}(αβ,p)$ (resp. $\mathbf{bes}(αβ,p)$) for any $\frac{1}{αβ}<p<\infty$, where $\mathbf{bes}(αβ,p)$ is a separable subspace of $\mathbf{Bes}(αβ,p)$. We also show the Itô-Nisio theorem for the bBm with $αβ>\frac{1}{2}$ in the Hölder spaces $\mathcal{C}^γ$, with $γ<αβ$.