论文标题

同位素和结中的结与等效性

Isotopy and equivalence of knots in 3-manifolds

论文作者

Aceto, Paolo, Bregman, Corey, Davis, Christopher W., Park, JungHwan, Ray, Arunima

论文摘要

我们表明,在质量,封闭,定向的3个manifold M中,当等效结是同位素时,并且仅当定向保存映射类组很微不足道时。如果以不可约,封闭,定向$ 3 $ - manifolds,我们表明了一个更一般的事实,即保留免费同质循环类别的每个定向同位素是对身份的同位素。在$ s^1 \ times s^2 $的情况下,我们给出了许多结的示例,其同位素类别通过gluck扭曲而改变。

We show that in a prime, closed, oriented 3-manifold M, equivalent knots are isotopic if and only if the orientation preserving mapping class group is trivial. In the case of irreducible, closed, oriented $3$-manifolds we show the more general fact that every orientation preserving homeomorphism which preserves free homotopy classes of loops is isotopic to the identity. In the case of $S^1\times S^2$, we give infinitely many examples of knots whose isotopy classes are changed by the Gluck twist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源