论文标题
逆图标识:我们可以识别给定图形标签的节点标签吗?
Inverse Graph Identification: Can We Identify Node Labels Given Graph Labels?
论文作者
论文摘要
图识别(GI)长期以来一直在图形学习中进行研究,并且在某些应用中至关重要(例如社会社区检测)。具体而言,鉴于其节点特征和边缘连接的收集,GI需要预测目标图的标签/得分。尽管此任务很常见,但实际上会出现更复杂的情况 - 我们应该通过例如在不同社区的标签中对社交网络中的类似用户进行分组,从而做出反事件。这触发了一个有趣的想法:我们可以识别出鉴于它们所属图的标签的节点吗?因此,本文定义了一个被称为逆图识别(IGI)的新型问题,而不是GI。在对IGI变体的正式讨论中,我们通过使用图标签和节点特征来选择一个特定的节点聚类研究案例研究,并在层次图的帮助下,进一步表征了不同图形之间的连接。为了解决此任务,我们提出了高斯混合图卷积网络(GMGCN),这是一种简单而有效的方法,它在GI方案下使用图形注意力网络(GAT)使节点级消息传递过程通过GI协议,然后通过高斯混合层(GML)渗透每个节点的类别。 GMGCN的训练进一步提高了提议的共识损失,以利用分层图的结构。进行了广泛的实验以测试IgI制定的合理性。我们验证了与其他基准相比,我们在我们建立的几个基准测试基准上验证了所提出的方法的优势。我们将发布我们的代码以及基准数据,以促进对IGI问题的更多研究。
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications (e.g. social community detection). Specifically, GI requires to predict the label/score of a target graph given its collection of node features and edge connections. While this task is common, more complex cases arise in practice---we are supposed to do the inverse thing by, for example, grouping similar users in a social network given the labels of different communities. This triggers an interesting thought: can we identify nodes given the labels of the graphs they belong to? Therefore, this paper defines a novel problem dubbed Inverse Graph Identification (IGI), as opposed to GI. Upon a formal discussion of the variants of IGI, we choose a particular case study of node clustering by making use of the graph labels and node features, with an assistance of a hierarchical graph that further characterizes the connections between different graphs. To address this task, we propose Gaussian Mixture Graph Convolutional Network (GMGCN), a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI and then infers the category of each node via a Gaussian Mixture Layer (GML). The training of GMGCN is further boosted by a proposed consensus loss to take advantage of the structure of the hierarchical graph. Extensive experiments are conducted to test the rationality of the formulation of IGI. We verify the superiority of the proposed method compared to other baselines on several benchmarks we have built up. We will release our codes along with the benchmark data to facilitate more research attention to the IGI problem.