论文标题
基于放射线学的神经架构搜索的多模式信息融合
Multi-Modality Information Fusion for Radiomics-based Neural Architecture Search
论文作者
论文摘要
“放射线学”是一种从放射线图像中提取可最小的定量特征的方法。然后,这些特征可用于确定预后,例如预测远处转移(DM)的发展。但是,现有的放射线方法需要复杂的手动努力,包括设计手工制作的放射线特征及其提取和选择。基于卷积神经网络(CNN)的最近的放射线方法也需要在网络体系结构设计和超参数调整中进行手动输入。当存在多种成像方式时,放射素复杂性进一步复杂,例如,正电子发射层造影 - 计算机断层扫描(PET -CT),其中PET中有功能信息和来自计算机断层扫描(CT)的互补解剖学定位信息。现有的多模式放射线方法手动融合了分别提取的数据。对手动融合的依赖通常会导致次优融合,因为它们取决于“专家”对医学图像的理解。在这项研究中,我们提出了一种多模式神经结构搜索方法(MM-NAS),以自动为放射线学提供最佳的多模式图像特征,从而消除对手动过程的依赖性。我们评估了使用软组织肉瘤(STSS)的公共PET-CT数据集预测DM的能力。我们的结果表明,与最先进的放射线方法相比,我们的MM-NAS具有更高的预测准确性。
'Radiomics' is a method that extracts mineable quantitative features from radiographic images. These features can then be used to determine prognosis, for example, predicting the development of distant metastases (DM). Existing radiomics methods, however, require complex manual effort including the design of hand-crafted radiomic features and their extraction and selection. Recent radiomics methods, based on convolutional neural networks (CNNs), also require manual input in network architecture design and hyper-parameter tuning. Radiomic complexity is further compounded when there are multiple imaging modalities, for example, combined positron emission tomography - computed tomography (PET-CT) where there is functional information from PET and complementary anatomical localization information from computed tomography (CT). Existing multi-modality radiomics methods manually fuse the data that are extracted separately. Reliance on manual fusion often results in sub-optimal fusion because they are dependent on an 'expert's' understanding of medical images. In this study, we propose a multi-modality neural architecture search method (MM-NAS) to automatically derive optimal multi-modality image features for radiomics and thus negate the dependence on a manual process. We evaluated our MM-NAS on the ability to predict DM using a public PET-CT dataset of patients with soft-tissue sarcomas (STSs). Our results show that our MM-NAS had a higher prediction accuracy when compared to state-of-the-art radiomics methods.