论文标题

HOM缔合代数和协变量的Hom-Bialgebras上的Rota-Baxter系统

Rota-Baxter systems on Hom-associative algebras and covariant Hom-bialgebras

论文作者

Das, Apurba

论文摘要

Brzeziński引入了Rota-baxter系统,作为与树突状结构,联想杨手机对和协变量的Bialgebras相关的Rota-baxter操作员的概括。在本文中,我们在HOM缔约代数上定义了Rota-Baxter系统,并展示了它们如何在基本的HOM缔约性代数上诱导HOM Dendriorder结构和弱假胞源。我们介绍了Hom-Yang-Baxter对和协变量的Hom-Bialgebra概念。给定一对霍姆 - 巴克斯特对,我们构建了一个扭曲的旋转式式驱动器系统和一个(quasitriangular)协变量的hom-bialgebra。最后,我们考虑在协方差中的共同生物中扰动。

Rota-Baxter systems were introduced by Brzeziński as a generalization of Rota-Baxter operators that are related to dendriform structures, associative Yang-Baxter pairs and covariant bialgebras. In this paper, we define Rota-Baxter systems on Hom-associative algebras and show how they induce Hom-dendriform structures and weak pseudotwistors on the underlying Hom-associative algebra. We introduce Hom-Yang-Baxter pairs and a notion of covariant Hom-bialgebra. Given a Hom-Yang-Baxter pair, we construct a twisted Rota-Baxter system and a (quasitriangular) covariant Hom-bialgebra. Finally, we consider perturbations of the coproduct in a covariant Hom-bialgebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源