论文标题
曲线上矢量束的模量空间的动机分解
Motivic decompositions of moduli spaces of vector bundles on curves
论文作者
论文摘要
令$ r \ geq 2,d $为两个整数,它们彼此相关。让$ c $是属$ g \ geq 2 $和$ m(r,l)$的光滑的投射曲线,是$ r $ r $ r $ stable矢量捆绑包的模量空间,其决定因素对固定线条$ l $ l $ d $ d $ d $ y y $ c $ c $ c。我们给出了Arxiv:1806.11101的主要结果版本的新证明。我们还发现了$ m(3,l)的新动机分解。
Let $r \geq 2, d$ be two integers which are coprime to each other. Let $C$ be a smooth projective curve of genus $g \geq 2$ and $M(r,L)$ be the moduli space of rank $r$ stable vector bundles on $C$ whose determinants are isomorphic to a fixed line bundle $L$ of degree $d$ on $C.$ In this paper, we study motivic decomposition of $M(r,L)$ for $r=2, 3$ cases. We give a new proof of a version of the main result of arXiv:1806.11101. We also found a new motivic decomposition of $M(3,L).$