论文标题
合并的子采样和分析集成,用于有效的大规模$ GW $计算2D系统
Combined sub-sampling and analytical integration for efficient large-scale $GW$ calculations for 2D systems
论文作者
论文摘要
由于收敛问题和相对于系统大小的计算成本的不利缩放,复杂材料的准粒子性质的准确预测仍然是一个重大挑战。二维(2D)材料的Quasiparticle $ GW $计算特别困难。介电筛选和2D材料的电子自能的异常分析行为使常规的布里鲁因区(BZ)集成方法效率低下,并且需要非常密集的$ k $ - 植物以适当地融合计算出的Quasiparticle能量。在这项工作中,我们提出了一种合并的非均匀子采样和分析整合方法,该方法可以大大提高2D $ GW $计算中BZ集成的效率。我们的工作与以前的工作区分开来,而不是专注于复杂的介电矩阵或筛选的库仑相互作用矩阵,而是利用了小$ \ mathbf {q} $ limition hy small $ \ mathbf {q} $ limition的卷曲自我能量$σ(\ mathbf {q})$的各种术语的分析行为。当我们最近开发的另一种加速$ GW $方法结合使用时,该方法可以大大加速2D材料的$ GW $计算。我们的方法允许以计算成本的一部分为复杂2D系统的完全收敛的$ GW $计算,从而促进了2D半导体对各种应用的2D半导体的准粒子属性的未来高吞吐量筛选。为了证明我们的新方法的能力和性能,我们对单层C $ _2 $ N进行了完全融合的$ GW $计算,这是一种最近发现的带有大型单元的2D材料,并详细研究了其准粒子带结构。
Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size. Quasiparticle $GW$ calculations for two dimensional (2D) materials are especially difficult. The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone (BZ) integration approach rather inefficient and require an extremely dense $k$-grid to properly converge the calculated quasiparticle energies. In this work, we present a combined non-uniform sub-sampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D $GW$ calculations. Our work is distinguished from previous work in that, instead of focusing on the intricate dielectric matrix or the screened Coulomb interaction matrix, we exploit the analytical behavior of various terms of the convolved self-energy $Σ(\mathbf{q})$ in the small $\mathbf{q}$ limit. This method, when combined with another accelerated $GW$ method that we developed recently, can drastically speed-up (by over three orders of magnitude) $GW$ calculations for 2D materials. Our method allows fully converged $GW$ calculations for complex 2D systems at a fraction of computational cost, facilitating future high throughput screening of the quasiparticle properties of 2D semiconductors for various applications. To demonstrate the capability and performance of our new method, we have carried out fully converged $GW$ calculations for monolayer C$_2$N, a recently discovered 2D material with a large unit cell, and investigate its quasiparticle band structure in detail.