论文标题
Boxe:知识库完成的盒子嵌入模型
BoxE: A Box Embedding Model for Knowledge Base Completion
论文作者
论文摘要
知识库完成(KBC)旨在通过利用知识库(KB)中已经存在的信息来自动推断丢失的事实。 KBC的一种有希望的方法是将知识嵌入潜在空间中,并从学习的嵌入中做出预测。但是,现有的嵌入模型至少受到以下局限性的约束:(1)理论不表现性,(2)缺乏对突出推理模式的支持(例如层次结构),(3)缺乏对KBC对高等教育关系的支持,以及(4)缺乏对合并逻辑规则的支持。在这里,我们提出了一个称为Boxe的时空传播嵌入模型,该模型同时解决了所有这些局限性。 Boxe将实体嵌入到点,并且关系为一组超矩形(或框),它们在空间上表征了基本的逻辑属性。这个看似简单的抽象产生了一个完全表达的模型,为许多所需的逻辑属性提供了自然编码。 Boxe既可以从富裕的规则语言类别中捕获和注入规则,远远超出了个人推论模式。根据设计,Boxe自然适用于更高的KBS。我们进行了详细的实验分析,并表明Boxe在基准知识图和更一般的KB上都实现了最先进的性能,并且我们从经验上显示了整合逻辑规则的力量。
Knowledge base completion (KBC) aims to automatically infer missing facts by exploiting information already present in a knowledge base (KB). A promising approach for KBC is to embed knowledge into latent spaces and make predictions from learned embeddings. However, existing embedding models are subject to at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of support for prominent inference patterns (e.g., hierarchies), (3) lack of support for KBC over higher-arity relations, and (4) lack of support for incorporating logical rules. Here, we propose a spatio-translational embedding model, called BoxE, that simultaneously addresses all these limitations. BoxE embeds entities as points, and relations as a set of hyper-rectangles (or boxes), which spatially characterize basic logical properties. This seemingly simple abstraction yields a fully expressive model offering a natural encoding for many desired logical properties. BoxE can both capture and inject rules from rich classes of rule languages, going well beyond individual inference patterns. By design, BoxE naturally applies to higher-arity KBs. We conduct a detailed experimental analysis, and show that BoxE achieves state-of-the-art performance, both on benchmark knowledge graphs and on more general KBs, and we empirically show the power of integrating logical rules.