论文标题

DEU-NET:3D心脏MRI视频细分的可变形U-NET

DeU-Net: Deformable U-Net for 3D Cardiac MRI Video Segmentation

论文作者

Dong, Shunjie, Zhao, Jinlong, Zhang, Maojun, Shi, Zhengxue, Deng, Jianing, Shi, Yiyu, Tian, Mei, Zhuo, Cheng

论文摘要

心脏磁共振成像(MRI)的自动分割有助于临床应用中有效,准确的体积测量。但是,由于各向异性分辨率和模棱两可的边界(例如,右心室内膜),现有方法在3D心脏MRI视频细分中遭受了准确性和鲁棒性的降解。在本文中,我们提出了一种新型的可变形U-NET(DEU-NET),以完全利用3D心脏MRI视频的时空信息,包括时间可变形的聚集模块(TDAM)和一个可变形的全球位置注意力(DGPA)。首先,TDAM将心脏MRI视频剪辑作为输入,并带有偏移预测网络提取的时间信息。然后,我们通过时间聚集变形卷积融合了提取时间信息,以产生融合的特征图。此外,为了汇总有意义的功能,我们通过采用可变形的注意U-NET来设计DGPA网络,该网络可以将更广泛的多维上下文信息编码为全局和本地功能。实验结果表明,我们的DEU-NET在常用评估指标上实现了最新的性能,尤其是对于心脏边缘信息(ASSD和HD)。

Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution and ambiguous border (e.g., right ventricular endocardium), existing methods suffer from the degradation of accuracy and robustness in 3D cardiac MRI video segmentation. In this paper, we propose a novel Deformable U-Net (DeU-Net) to fully exploit spatio-temporal information from 3D cardiac MRI video, including a Temporal Deformable Aggregation Module (TDAM) and a Deformable Global Position Attention (DGPA) network. First, the TDAM takes a cardiac MRI video clip as input with temporal information extracted by an offset prediction network. Then we fuse extracted temporal information via a temporal aggregation deformable convolution to produce fused feature maps. Furthermore, to aggregate meaningful features, we devise the DGPA network by employing deformable attention U-Net, which can encode a wider range of multi-dimensional contextual information into global and local features. Experimental results show that our DeU-Net achieves the state-of-the-art performance on commonly used evaluation metrics, especially for cardiac marginal information (ASSD and HD).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源