论文标题

学习和利用医学图像分类的阶级视觉相关性

Learning and Exploiting Interclass Visual Correlations for Medical Image Classification

论文作者

Wei, Dong, Cao, Shilei, Ma, Kai, Zheng, Yefeng

论文摘要

基于神经网络的深度医学图像分类通常使用“硬”标签进行训练,在这种训练中,正确类别的可能性为1,而其他类别的可能性为0。但是,这些硬目标可以使网络对其预测过度自信,并容易过度适应培训数据,从而影响模型的通用和适应。研究表明,标签平滑和软化可以提高分类性能。然而,现有方法要么是非数据驱动的,要么是适用性的限制。在本文中,我们介绍了类相关学习网络(CCL-NET),以从给定的培训数据中学习类间的视觉相关性,并产生软标签以帮助分类任务。我们建议通过使用轻量级插件CCL块的特定于类特定的嵌入方式隐式学习所需的相关性,而是建议通过距离指标进行隐式学习。基于几何解释相关性的直观损失是为了加强阶级间相关性学习的设计。我们进一步介绍了拟议的CCL块作为插件头的端到端训练以及分类主链,同时生成软标签。我们对国际皮肤成像协作2018数据集的实验结果表明,从培训数据中有效学习了阶级间相关性,以及在与CCL块的几种广泛使用的现代网络结构上的性能一致。

Deep neural network-based medical image classifications often use "hard" labels for training, where the probability of the correct category is 1 and those of others are 0. However, these hard targets can drive the networks over-confident about their predictions and prone to overfit the training data, affecting model generalization and adaption. Studies have shown that label smoothing and softening can improve classification performance. Nevertheless, existing approaches are either non-data-driven or limited in applicability. In this paper, we present the Class-Correlation Learning Network (CCL-Net) to learn interclass visual correlations from given training data, and produce soft labels to help with classification tasks. Instead of letting the network directly learn the desired correlations, we propose to learn them implicitly via distance metric learning of class-specific embeddings with a lightweight plugin CCL block. An intuitive loss based on a geometrical explanation of correlation is designed for bolstering learning of the interclass correlations. We further present end-to-end training of the proposed CCL block as a plugin head together with the classification backbone while generating soft labels on the fly. Our experimental results on the International Skin Imaging Collaboration 2018 dataset demonstrate effective learning of the interclass correlations from training data, as well as consistent improvements in performance upon several widely used modern network structures with the CCL block.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源