论文标题

直径为5

A complete characterisation of vertex-multiplications of trees with diameter 5

论文作者

Wong, W. H. W., Tay, E. G.

论文摘要

Koh和Tay推出了一个新的图形系列,即$ G $ VERTEX-MULTIPLICATIONS,作为完整$ N $ - 分段图的扩展。他们证明了$ g $ vertex-multiplications的基本分类为$ \ mathscr {c} _0,\ mathscr {c} _1 $和$ \ mathscr {c} _2 $。结果表明,直径至少3的树的任何顶点 - 刺激性不属于$ \ Mathscr {C} _2 $。此外,对于直径$ 5 $的树木的顶点 - 刺激性,建立了一些$ \ mathscr {c} _0 $的必要条件。在本文中,我们给出了直径$ 5 $ in $ \ mathscr {c} _0 $和$ \ MATHSCR {C} _1 $的树木的顶点 - 杂物的完整表征。

Koh and Tay introduced a new family of graphs, $G$ vertex-multiplications, as an extension of complete $n$-partite graphs. They proved a fundamental classification of $G$ vertex-multiplications into three classes $\mathscr{C}_0, \mathscr{C}_1$ and $\mathscr{C}_2$. It was shown that any vertex-multiplication of a tree with diameter at least 3 does not belong to the class $\mathscr{C}_2$. Furthermore, for vertex-multiplications of trees with diameter $5$, some necessary and sufficient conditions for $\mathscr{C}_0$ were established. In this paper, we give a complete characterisation of vertex-multiplications of trees with diameter $5$ in $\mathscr{C}_0$ and $\mathscr{C}_1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源