论文标题
大量MU-MIMO中的数据检测不匹配
Mismatched Data Detection in Massive MU-MIMO
论文作者
论文摘要
我们研究了大量多用户(MU)多输入多输出(MIMO)无线系统的不匹配的数据检测,其中数据检测器中使用的传输信号的先验分布与真实先验有所不同。为了最大程度地减少先前不匹配引起的绩效损失,我们将调整阶段包括到最近提出的大型MIMO近似消息传递(LAMA)算法中,该算法可以开发具有最佳以及最佳参数调整的数据检测器。我们表明,与使用最佳先验的喇嘛相比,精心挑选的先验可以设计更简单和计算更有效的数据检测算法,同时实现了近乎最佳的误差率性能。特别是,我们证明了对确切先验的硬件友好型近似,可以设计出几乎单独的性能的低复杂数据检测器。此外,对于涵盖正交振幅调制(QAM)星座的高斯先验和统一先验,我们的绩效分析分别恢复了对线性和非线性大规模MU-MIMO数据检测的经典和最新结果。
We investigate mismatched data detection for massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems in which the prior distribution of the transmit signal used in the data detector differs from the true prior. In order to minimize the performance loss caused by the prior mismatch, we include a tuning stage into the recently proposed large-MIMO approximate message passing (LAMA) algorithm, which enables the development of data detectors with optimal as well as sub-optimal parameter tuning. We show that carefully-selected priors enable the design of simpler and computationally more efficient data detection algorithms compared to LAMA that uses the optimal prior, while achieving near-optimal error-rate performance. In particular, we demonstrate that a hardware-friendly approximation of the exact prior enables the design of low-complexity data detectors that achieve near individually-optimal performance. Furthermore, for Gaussian priors and uniform priors within a hypercube covering the quadrature amplitude modulation (QAM) constellation, our performance analysis recovers classical and recent results on linear and non-linear massive MU-MIMO data detection, respectively.