论文标题

rényi熵奇异性作为耦合光纤维系统中拓扑关键的特征

Rényi Entropy Singularities as Signatures of Topological Criticality in Coupled Photon-Fermion Systems

论文作者

Méndez-Córdoba, F. P. M., Mendoza-Arenas, J. J., Gómez-Ruiz, F. J., Rodríguez, F. J., Tejedor, C., Quiroga, L.

论文摘要

我们表明,可以通过测量实验可访问的光子可观察物(例如Fano因子和腔剂正交振幅)来识别嵌入腔中的基塔夫链的拓扑相变。此外,基于密度矩阵重新归一化组的数值计算,得到了空腔状态的分析高斯近似值的认可,我们提出了这些可观察到的和量子熵奇点之间的直接联系。我们研究了光和物质子系统之间的两项两分纠缠措施,即von Neumann和Rényi纠缠熵。即使两者在拓扑相过渡点显示奇异性,但只有Rényi熵才能分析连接到可测量的Fano因子。因此,我们展示了一种从可观察到的腔体中恢复系统纠缠的两部分纠缠的方法。因此,我们提出了通过Rényi熵来实验访问拓扑量子相变的控制和检测的途径,可以通过超导电路中的标准低噪声线性扩增技术来测量。通过这种方式,可以在可行的实验设置中解决光子特性系统中Majorana Pallitons的主要量子信息特征。

We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified by measuring experimentally accessible photon observables such as the Fano factor and the cavity quadrature amplitudes. Moreover, based on density matrix renormalization group numerical calculations, endorsed by an analytical Gaussian approximation for the cavity state, we propose a direct link between those observables and quantum entropy singularities. We study two bipartite entanglement measures, the von Neumann and Rényi entanglement entropies, between light and matter subsystems. Even though both display singularities at the topological phase transition points, remarkably only the Rényi entropy can be analytically connected to the measurable Fano factor. Consequently, we show a method to recover the bipartite entanglement of the system from a cavity observable. Thus, we put forward a path to experimentally access the control and detection of a topological quantum phase transition via the Rényi entropy, which can be measured by standard low noise linear amplification techniques in superconducting circuits. In this way, the main quantum information features of Majorana polaritons in photon-fermion systems can be addressed in feasible experimental setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源