论文标题
使用图形卷积网络学习对皮肤状况的差异诊断
Learning Differential Diagnosis of Skin Conditions with Co-occurrence Supervision using Graph Convolutional Networks
论文作者
论文摘要
据报道,皮肤状况是全球非致命疾病负担的第四个主要原因。但是,鉴于皮肤疾病的巨大范围在临床上定义了皮肤病学专业知识,因此及时,准确地诊断皮肤状况仍然是一项艰巨的任务。使用计算机视觉技术,深度学习系统已证明有效地协助临床医生在放射学,眼科等图像诊断方面进行了帮助。在本文中,我们提出了一个深度学习系统(DLS),该系统可以使用临床图像预测皮肤病的差异诊断。我们的DLS将差异诊断设置为80条条件下的多标签分类任务,仅当不完整的图像标签可用时。我们通过将分类网络与图表共发生的标签卷积网络(GCN)相结合,解决标签不完整问题,并有效地将其正规化为稀疏表示。我们的方法在136,462张临床图像上证明了我们的方法,并得出结论,分类准确性大大受益于同时的监督。我们的DLS在12,378个测试图像上获得了93.6%的前5个准确性,并且始终超过基线分类网络。
Skin conditions are reported the 4th leading cause of nonfatal disease burden worldwide. However, given the colossal spectrum of skin disorders defined clinically and shortage in dermatology expertise, diagnosing skin conditions in a timely and accurate manner remains a challenging task. Using computer vision technologies, a deep learning system has proven effective assisting clinicians in image diagnostics of radiology, ophthalmology and more. In this paper, we propose a deep learning system (DLS) that may predict differential diagnosis of skin conditions using clinical images. Our DLS formulates the differential diagnostics as a multi-label classification task over 80 conditions when only incomplete image labels are available. We tackle the label incompleteness problem by combining a classification network with a Graph Convolutional Network (GCN) that characterizes label co-occurrence and effectively regularizes it towards a sparse representation. Our approach is demonstrated on 136,462 clinical images and concludes that the classification accuracy greatly benefit from the Co-occurrence supervision. Our DLS achieves 93.6% top-5 accuracy on 12,378 test images and consistently outperform the baseline classification network.