论文标题

观察Pines的恶魔在SR $ _2 $ ruo $ _4 $

Observation of Pines' Demon in Sr$_2$RuO$_4$

论文作者

Husain, A. A., Huang, E. W., Mitrano, M., Rak, M. S., Rubeck, S. I., Guo, X., Yang, H., Sow, C., Maeno, Y., Uchoa, B., Chiang, T. C., Batson, P. E., Phillips, P. W., Abbamonte, P.

论文摘要

金属的特征激发是其等离子体,它是其电子密度的量化集体振荡。 1956年,戴维·派恩斯(David Pines)预测,一种被称为“恶魔”的不同类型的等离子体可能存在于包含多种电荷载体的三维金属中。由不同带中电子的相位运动组成,恶魔是声学的,电气中性的,并且不会偶发到光,因此从未在平衡的三维金属中检测到。然而,人们认为,恶魔对于包括混合价半学的相变,金属纳米颗粒的光学特性,魏尔半学中的“ soundarons”以及高温超导性(例如金属水力)至关重要。在这里,我们提供了来自动量分辨的电子损坏光谱(M-EELS)的SR $ _2 $ ruo $ _4 $的恶魔的证据。该恶魔由$β$和$γ$频段的电子形成,室温速度$ v = 1.065 \ pm 0.12 \ times 10^5 $ m/s和关键动量$ q_c = 0.08 $ qus_c = 0.08 $。它的光谱重量违反了低能的部分总和规则,从而确认其中性特征。我们的研究证实了一个66岁的预测,并表明恶魔可能是多机金属的普遍特征。

The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a "demon," could exist in three-dimensional metals containing more than one species of charge carrier. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral, and do not couple to light, so have never been detected in an equilibrium, three-dimensional metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals, optical properties of metal nanoparticles, "soundarons" in Weyl semimetals, and high temperature superconductivity in, for example, metal hydrides. Here, we present evidence for a demon in Sr$_2$RuO$_4$ from momentum-resolved electron energy-loss spectroscopy (M-EELS). Formed of electrons in the $β$ and $γ$ bands, the demon is gapless with a room temperature velocity $v=1.065 \pm 0.12 \times 10^5$ m/s and critical momentum $q_c=0.08$ reciprocal lattice units. Its spectral weight violates low-energy partial sum rules, affirming its neutral character. Our study confirms a 66-year old prediction and suggests that demons may be a pervasive feature of multiband metals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源