论文标题

一组物品的共识减半

Consensus Halving for Sets of Items

论文作者

Goldberg, Paul W., Hollender, Alexandros, Igarashi, Ayumi, Manurangsi, Pasin, Suksompong, Warut

论文摘要

一致的一半是指将资源分为两个部分的问题,以便每个代理都平等地值。先前的工作表明,当资源以一个间隔表示时,最多始终存在$ n $削减的共识减半,但是即使对于具有简单估值功能的代理商也很难计算。在本文中,我们研究了在自然环境中的共识减半,其中资源由一组无线性排序的项目组成。当代理具有添加剂实用程序时,我们会提出一种多项式时间算法,该算法将共识减半,最多$ n $削减,并表明当代理商的实用程序从概率分布中得出时,几乎肯定是必要的。另一方面,我们表明,对于一类简单的单调公用事业,问题已经成为ppad-hard。此外,我们将共识减半和对比度与共识$ k $ splitting的更为普遍的问题进行了比较,我们希望以不平等的比率将资源分为$ k $零件,并在计算小型可满足集合的问题上给我们带来一些结果。

Consensus halving refers to the problem of dividing a resource into two parts so that every agent values both parts equally. Prior work has shown that when the resource is represented by an interval, a consensus halving with at most $n$ cuts always exists, but is hard to compute even for agents with simple valuation functions. In this paper, we study consensus halving in a natural setting where the resource consists of a set of items without a linear ordering. When agents have additive utilities, we present a polynomial-time algorithm that computes a consensus halving with at most $n$ cuts, and show that $n$ cuts are almost surely necessary when the agents' utilities are drawn from probabilistic distributions. On the other hand, we show that for a simple class of monotonic utilities, the problem already becomes PPAD-hard. Furthermore, we compare and contrast consensus halving with the more general problem of consensus $k$-splitting, where we wish to divide the resource into $k$ parts in possibly unequal ratios, and provide some consequences of our results on the problem of computing small agreeable sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源