论文标题

混合划分和诱导树搜索算法的方法

Hybrid divide-and-conquer approach for tree search algorithms

论文作者

Rennela, Mathys, Brand, Sebastiaan, Laarman, Alfons, Dunjko, Vedran

论文摘要

在近期和中期,量子计算机的挑战之一是我们可以用于计算的量子数量有限。因此,在尺寸限制下找到实现有用的量子改进的方法是现场的关键问题。在这种情况下,最近表明,即使仅给出了比问题本身要小得多的量子计算机,即使仅给出量子计算机的访问权,混合经典量子方法也可以帮助对经典的分裂和诱导算法提供多项式加速。在这项工作中,我们在树搜索算法的背景下研究了混合划分和混合方法,并通过包括量子回溯来扩展它,这比以前的基于Grover的方法更好。此外,我们提供了在树搜索上下文中多项式加速的一般标准,并提供了许多示例,在这些示例中,可以使用任意较小的量子计算机来获得多项式速度UPS。我们为DPLL的算法提供了加速条件,并且我们证明了PPSZ算法(最快的Boolean Explianible solver的核心)的无阈值加速度,用于良好的公式类别。我们还提供了一个简单的示例,在某些经过良好研究的复杂性理论假设下,可以以算法独立的方式获得加速度。最后,我们简要讨论混合方法在提供更大问题的加速方面的基本局限性。

One of the challenges of quantum computers in the near- and mid- term is the limited number of qubits we can use for computations. Finding methods that achieve useful quantum improvements under size limitations is thus a key question in the field. In this vein, it was recently shown that a hybrid classical-quantum method can help provide polynomial speed-ups to classical divide-and-conquer algorithms, even when only given access to a quantum computer much smaller than the problem itself. In this work, we study the hybrid divide-and-conquer method in the context of tree search algorithms, and extend it by including quantum backtracking, which allows better results than previous Grover-based methods. Further, we provide general criteria for polynomial speed-ups in the tree search context, and provide a number of examples where polynomial speed ups, using arbitrarily smaller quantum computers, can be obtained. We provide conditions for speedups for the well known algorithm of DPLL, and we prove threshold-free speed-ups for the PPSZ algorithm (the core of the fastest exact Boolean satisfiability solver) for well-behaved classes of formulas. We also provide a simple example where speed-ups can be obtained in an algorithm-independent fashion, under certain well-studied complexity-theoretical assumptions. Finally, we briefly discuss the fundamental limitations of hybrid methods in providing speed-ups for larger problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源