论文标题
可扩展和可逆的多种多样的学习,并使用几何规则化自动编码器
Extendable and invertible manifold learning with geometry regularized autoencoders
论文作者
论文摘要
数据探索的基本任务是提取简化的低维表示,以捕获数据中的固有几何形状,尤其是在两个或三个维度中忠实地可视化数据。此任务的常见方法使用内核方法进行流形学习。但是,这些方法通常仅提供固定输入数据的嵌入,而不能扩展到新的数据点。自动编码器最近在表示学习中也很受欢迎。但是,尽管它们自然地计算出可扩展到新数据和可逆的提取器(即重建潜在表示的原始特征),但与基于内核的流形学习相比,它们具有遵循全局固有几何形状的功能。我们提出了一种通过将几何正则化项合并到自动编码器瓶颈中的新方法来整合这两种方法的方法。我们的正则化基于与最近所提供的PHATE可视化方法的扩散电位距离,鼓励学习的潜在表示遵循固有的数据几何形状,类似于流动学习算法,同时仍可以忠实地扩展到来自潜在坐标的原始特征空间中数据的新数据和重建。我们将我们的方法与领先的内核方法和自动编码器模型进行了比较,以进行流形学习,以提供定性和定量的证据,证明了我们在保留内在结构,不超出样本扩展和重建方面的优势。我们的方法很容易用于大数据应用程序,而其他方法在这方面受到限制。
A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, especially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel methods for manifold learning. However, these methods typically only provide an embedding of fixed input data and cannot extend to new data points. Autoencoders have also recently become popular for representation learning. But while they naturally compute feature extractors that are both extendable to new data and invertible (i.e., reconstructing original features from latent representation), they have limited capabilities to follow global intrinsic geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. Our regularization, based on the diffusion potential distances from the recently-proposed PHATE visualization method, encourages the learned latent representation to follow intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and reconstruction of data in the original feature space from latent coordinates. We compare our approach with leading kernel methods and autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.