论文标题

用于医学图像诊断的协作无监督的域适应

Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis

论文作者

Zhang, Yifan, Wei, Ying, Wu, Qingyao, Zhao, Peilin, Niu, Shuaicheng, Huang, Junzhou, Tan, Mingkui

论文摘要

基于深度学习的医学图像诊断在临床医学中表现出巨大的潜力。但是,在现实世界应用中,它通常会遇到两个主要困难:1)由于医疗图像昂贵的注释成本,仅有限的标签可用于模型培训; 2)由于疾病的诊断困难,标记的图像可能包含相当大的标签噪声(例如,标签错误的标签)。为了解决这些问题,我们试图利用来自相关域的丰富标记数据,以通过{无监督的域Adaptation}(UDA)来帮助目标任务中的学习。与大多数依赖清洁标记的数据或假设样本同样转移的UDA方法不同,我们创新地提出了一种协作无监督的域适应算法,该算法进行了可转移性的适应性,并以协作方式征服了标签噪声。我们从理论上分析了所提出的方法的概括性能,并在医学和一般图像上对其进行了经验评估。有希望的实验结果证明了该方法的优越性和概括。

Deep learning based medical image diagnosis has shown great potential in clinical medicine. However, it often suffers two major difficulties in real-world applications: 1) only limited labels are available for model training, due to expensive annotation costs over medical images; 2) labeled images may contain considerable label noise (e.g., mislabeling labels) due to diagnostic difficulties of diseases. To address these, we seek to exploit rich labeled data from relevant domains to help the learning in the target task via {Unsupervised Domain Adaptation} (UDA). Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm, which conducts transferability-aware adaptation and conquers label noise in a collaborative way. We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images. Promising experimental results demonstrate the superiority and generalization of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源