论文标题

高通量VLSI架构

High-Throughput VLSI Architecture for GRAND

论文作者

Abbas, Syed Mohsin, Tonnellier, Thibaud, Ercan, Furkan, Gross, Warren J.

论文摘要

猜测随机添加噪声解码(GRAND)是最近提出的用于线性误差校正代码的通用解码算法。由于Grand不取决于代码的结构,因此可以用于当代通信标准中遇到的任何代码,甚至可以用于随机线性网络编码。该属性使该新算法特别吸引人。 Grand试图识别损坏代码字的噪音,而不是试图解码接收到的向量。为此,Grand依赖于连续应用于接收的向量的测试错误模式的产生。在本文中,我们提出了大算法的第一个硬件体系结构。考虑到限制测试模式数量的放弃(GrandAb),所提出的体系结构仅需要$ 2+\ sum_ {i = 2}^{n} \ left \ lftloor \ lfloor \ frac {i} {i} {2} {2} {2} \ right \ right \ rfloor $ rfloor $时间步$ \ text {ab} = 3 $时需要。对于$ 128 $的代码长度,我们提出的硬件体系结构仅显示执行查询总数作为时间步骤的总数($ 1.2 \%$)。使用TSMC 65NM CMOS技术的合成结果表明,可以以$ 128 $的代码长度为$ 128 $的平均吞吐量$ 32 $ GBP至$ 64 $ GBPS,代码长度为$ 128 $ db,代码速率高于$ 0.75 $ $ 0.75 $。与针对$(79,64)$ BCH代码量身定制的解码器进行的比较表明,所提出的体系结构可以在高SNRS处获得稍高的平均吞吐量,同时获得相同的解码性能。

Guessing Random Additive Noise Decoding (GRAND) is a recently proposed universal decoding algorithm for linear error correcting codes. Since GRAND does not depend on the structure of the code, it can be used for any code encountered in contemporary communication standards or may even be used for random linear network coding. This property makes this new algorithm particularly appealing. Instead of trying to decode the received vector, GRAND attempts to identify the noise that corrupted the codeword. To that end, GRAND relies on the generation of test error patterns that are successively applied to the received vector. In this paper, we propose the first hardware architecture for the GRAND algorithm. Considering GRAND with ABandonment (GRANDAB) that limits the number of test patterns, the proposed architecture only needs $2+\sum_{i=2}^{n} \left\lfloor\frac{i}{2}\right\rfloor$ time steps to perform the $\sum_{i=1}^3 \binom{n}{i}$ queries required when $\text{AB}=3$. For a code length of $128$, our proposed hardware architecture demonstrates only a fraction ($1.2\%$) of the total number of performed queries as time steps. Synthesis result using TSMC 65nm CMOS technology shows that average throughputs of $32$ Gbps to $64$ Gbps can be achieved at an SNR of $10$ dB for a code length of $128$ and code rates rate higher than $0.75$, transmitted over an AWGN channel. Comparisons with a decoder tailored for a $(79,64)$ BCH code show that the proposed architecture can achieve a slightly higher average throughput at high SNRs, while obtaining the same decoding performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源