论文标题

在简单多边形中的最小链路可见性路径上

On approximations to minimum link visibility paths in simple polygons

论文作者

Zarrabi, Mohammad Reza, Charkari, Nasrollah Moghaddam

论文摘要

我们研究了众所周知的多边形可见性路径(观察者)问题的实用变体。对于多边形$ p $,最低链接可见性路径是$ p $中的多边形可见性路径,其链接数量最少。找到最小链路可见性路径的问题是简单多边形的NP- hard。如果最低链接可见性路径的链接长度(链接数)为$ opt $,用于带有$ n $顶点的简单多边形$ p $,我们提供$ O(kn^2)$运行时的算法,可产生多边形可见性路径(或tours),最多可在$+a_l/k-1 $ a_l/$(k-k-k-1)$ a_l/k)(或$)$(或$)(k-1)$(K)或$ k $是$ p $,$ a_l $的参数,是输出敏感参数,$γ$是$ O(k^3)$ o(k^3)$ time time近似算法的近似因子,用于图形旅行推销员问题(路径或旅游版本)。

We investigate a practical variant of the well-known polygonal visibility path (watchman) problem. For a polygon $P$, a minimum link visibility path is a polygonal visibility path in $P$ that has the minimum number of links. The problem of finding a minimum link visibility path is NP-hard for simple polygons. If the link-length (number of links) of a minimum link visibility path (tour) is $Opt$ for a simple polygon $P$ with $n$ vertices, we provide an algorithm with $O(kn^2)$ runtime that produces polygonal visibility paths (or tours) of link-length at most $(γ+a_l/(k-1))Opt$ (or $(γ+a_l/k)Opt$), where $k$ is a parameter dependent on $P$, $a_l$ is an output sensitive parameter and $γ$ is the approximation factor of an $O(k^3)$ time approximation algorithm for the graphic traveling salesman problem (path or tour version).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源