论文标题

RGB-IR跨模式人REID基于教师gan模型

RGB-IR Cross-modality Person ReID based on Teacher-Student GAN Model

论文作者

Zhang, Ziyue, Jiang, Shuai, Huang, Congzhentao, Li, Yang, Da Xu, Richard Yi

论文摘要

RGB-Infrared(RGB-IR)人员重新识别(REID)是一项技术,当光线不可用时,系统可以自动识别在视频的不同部分出现的同一个人。该任务的关键挑战是在不同方式下特征的跨模式差距。为了解决这一挑战,我们提出了一个教师学生GAN模型(TS-GAN),以采用不同的领域并指导REID骨干以学习更好的REID信息。 (1)为了获得相应的RGB-IR图像对,使用RGB-IR生成对抗网络(GAN)生成IR图像。 (2)为了开始对身份的培训,在IR模式的人图像中对REID教师模块进行了培训,然后将其用于指导其学生在培训方面的对手。 (3)同样,为了更好地调整不同的领域功能并增强模型REID的性能,使用了三个教师损失功能。与其他基于GAN的模型不同,所提出的模型只需要在测试阶段的骨干模块,从而使其更有效和节省资源。为了展示我们的模型能力,我们对新发行的SYSU-MM01 RGB-IR RE-ID基准进行了广泛的实验,并以49.8%的Rank-1和47.4%的地图实现了优于最先进的性能。

RGB-Infrared (RGB-IR) person re-identification (ReID) is a technology where the system can automatically identify the same person appearing at different parts of a video when light is unavailable. The critical challenge of this task is the cross-modality gap of features under different modalities. To solve this challenge, we proposed a Teacher-Student GAN model (TS-GAN) to adopt different domains and guide the ReID backbone to learn better ReID information. (1) In order to get corresponding RGB-IR image pairs, the RGB-IR Generative Adversarial Network (GAN) was used to generate IR images. (2) To kick-start the training of identities, a ReID Teacher module was trained under IR modality person images, which is then used to guide its Student counterpart in training. (3) Likewise, to better adapt different domain features and enhance model ReID performance, three Teacher-Student loss functions were used. Unlike other GAN based models, the proposed model only needs the backbone module at the test stage, making it more efficient and resource-saving. To showcase our model's capability, we did extensive experiments on the newly-released SYSU-MM01 RGB-IR Re-ID benchmark and achieved superior performance to the state-of-the-art with 49.8% Rank-1 and 47.4% mAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源