论文标题
P2D:一种自我监督的方法,用于从极化法进行深度估计
P2D: a self-supervised method for depth estimation from polarimetry
论文作者
论文摘要
单眼深度估计是计算机视觉领域的反复出现的主题。它可以通过深度图来描述场景的能力,同时减少与透视几何形状表述相关的约束倾向于使用其使用。然而,尽管算法不断改进,但大多数方法仅利用比色信息。因此,忽略了对镜面或透明度不敏感的事件的鲁棒性。为了响应这种现象,我们建议使用极化法作为自我监管的单台网络的输入。因此,我们提出利用极化线索,以鼓励对场景进行准确的重建。此外,我们包括一个偏振阶段的术语到最先进的方法,以利用数据的特定优势。我们的方法在定性和定量上都得到评估,表明该新信息的贡献以及增强的损耗函数可改善深度估计结果,尤其是对于镜面区域。
Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.