论文标题
将显微标准测量与生物学有效性联系起来:MKM和其他模型的理论方面的综述
Linking microdosimetric measurements to biological effectiveness: a review of theoretical aspects of MKM and other models
论文作者
论文摘要
已知辐射的不同质量会在同一吸收剂量下引起不同的生物学作用。生物学有效性的增强是在DNA分子和细胞核尺度上的能量沉积聚类的直接结果,而吸收剂量是宏观平均数量,该量没有考虑到纳米表和微米尺度的异质性。微量测量法旨在在细胞或亚细胞水平上测量辐射质量,试图增加对辐射损伤机制和影响的理解。这项工作将对基于实验微测定法的主要模型进行综述,并重点介绍了微测定动力学模型(MKM),从而在准确性,最初的假设和与实验数据的一致性方面启发了每个研究的优势。 MKM已用于预测不同种类的放射生物学量,例如细胞失活的相对生物学效应或氧增强比(OER)。还将提出MKM的最新发展,包括用于高线性能量传递(LET)辐射的新的非贫民窟校正方法,包括分馏研究的部分修复效应以及扩展模型以说明非目标效应。我们还将探索通过使用全能量谱以及短暂的纳米量度计量量,以更好地说明在细胞内和细胞间级别的能量沉积波动,从而探索用于改善模型的发展,以改善模型。
Different qualities of radiation are known to cause different biological effects at the same absorbed dose. Enhancements of the biological effectiveness are a direct consequence of the energy deposition clustering at the scales of DNA molecule and cell nucleus whilst absorbed dose is a macroscopic averaged quantity which does not take into account heterogeneities at the nanometer and micrometer scales. Microdosimetry aims to measure radiation quality at cellular or sub-cellular levels trying to increase the understanding of radiation damage mechanisms and effects. A review of the major models based on experimental microdosimetry, with an emphasis on the Microdosimetric Kinetic Model (MKM) will be presented in this work, enlightening the advantages of each one in terms of accuracy, initial assumptions and agreement with experimental data. The MKM has been used to predict different kinds of radiobiological quantities such as the Relative Biological Effects for cell inactivation or the Oxygen Enhancement Ratio (OER). Recent developments of the MKM will be also presented, including new non-Poissonian correction approaches for high linear energy transfer (LET) radiation, the inclusion of partial repair effects for fractionation studies and the extension of the model to account for non-targeted effects. We will also explore developments for improving the models by including track structure and the spatial damage correlation information by using the full fluence spectrum and, briefly, nanodosimetric quantities to better account for the energy-deposition fluctuations at the intra- and inter-cellular level.