论文标题

流行病的增长和griffiT对激发原子的新兴网络的影响

Epidemic growth and Griffiths effects on an emergent network of excited atoms

论文作者

Wintermantel, T. M., Buchhold, M., Shevate, S., Morgado, M., Wang, Y., Lochead, G., Diehl, S., Whitlock, S.

论文摘要

无论是物理,生物学过程还是社会过程,复杂的系统都表现出极难理解或从潜在原则中预测的动态。在这里,我们报告了Rydberg Atoms激光驱动的超低气体的集体激发动力学与疾病的扩散之间的惊人对应关系,这反过来又为研究复杂网络上的非平衡动力学开辟了一个高度可控制的实验平台。我们发现,促进的激发与自发衰减之间的竞争会导致激发次数的快速增长,遵循特征性的亚指数时间依赖性,这在经验上被视为真实流行病的关键特征。基于此,我们开发了一个定量的微观易感感染感染感受器(SIS)模型,该模型将生长和最终激发密度与新兴的异质网络的动力学联系起来,以及与扩展的格里菲斯阶段相关的罕见活性区域效应。这提供了对驱动的多体系统中非平衡关键性的性质的物理见解,以及导致复杂系统动力学中非宇宙幂律的机制。

Whether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the collective excitation dynamics of a laser driven ultracold gas of Rydberg atoms and the spreading of diseases, which in turn opens up a highly controllable experimental platform for studying non-equilibrium dynamics on complex networks. We find that the competition between facilitated excitation and spontaneous decay results in a fast growth of the number of excitations that follows a characteristic sub-exponential time dependence which is empirically observed as a key feature of real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible (SIS) model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源